Binary Addition

Boolean Algebra & Logic Gates

CSC 103 September 12, 2007

Recap from Monday

- Binary numbers (§ 1.1.1)
 - The computer stores everything as binary numbers

1

- Data numbers, text, music...
- Instructions for programming
- Locations / addresses

Overview for Today

- Binary concepts and binary numbers
- Circuit simulator
- Binary addition
 - Truth table
 - Half adder circuit

Binary Numbers: Physical Representation

- Concept of "on" and "off" for physical manufacturing of computers
- Basic component
 - Switch \Rightarrow Allows control of "on" & "off"
 - Historical versions?
 - •
 - Current implementation the transistor

Transistors

Binary Numbers: Abstract Representation

- Logic
 - Provides the primary logic functions of AND, OR, NOT
- Logic gates & logic circuits
 - Symbolic representation of basic logic functions to build circuits

Logic Functions: NOT

- One input and one output
 - Output = input *or*
 - Output ≠ input
- The 'NOT' function
 - <u>A A'</u> 0 1 1 0

- Logic Functions: AND, OR
- Two inputs, one output
- The 'AND' and 'OR' functions

<u>A B</u>		AND (•)	OR (+)	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	1	

• This is a *truth table*

Logic Gate: AND Function

Logic Gate: OR Function

Use of Logic Gates

- Data is represented by 1s and 0s
 - '1' means there is current or voltage
 - '0' means there is no voltage or current
- Digital circuits (*e.g.*, MP3 players, cell phones, computers)
 - These circuits are *all* constructed with AND, OR and NOT gates
- *ANY* digital circuit can be built with AND, OR and NOT gates

Logic Circuit Example

- How do we implement the following function as a circuit?
 - AC + (BC)'
 - In words this is:
 - As a circuit this is:

Logic Circuit Example con't

- Implementing the following function - AC + (BC)'
 - -A = 1 or true
 - -B = 0 or false
 - -C = 0 or false

Exclusive OR

Circuit Simulator

- Go to Exercise 1 on the course webpage
 - Do Exercise 1 of this page (notice that the rest of the page is the homework)
- To get started, download the Circuit Simulator (SimCir) zip file
- Select "Open Using Winzip"
- When the zip file opens, double click simcir.jar
- Circuit Simulator link

The Circuit Simulator

Circuit Simulator Window

Circuit Simulator	-{OroitLos]	×IDIx
	1 ° 6	
LED		
D.C.SV		
Pushon Bwitch		
Pushoff Switch		
Toggie Destch		
E ANNO		
NOR NOR		
€D} OR		
ENOR .		

Circuit Example

Using the Simulator

- Include a power supply (only need one)
- Use toggle switch for inputs
- Use LED for output (red=1, black=0)
- Quirks
 - If you resize, it will jumble your circuit
 - To cut select, and then click on the scissors
 - Some people have trouble saving test this first!!

Onto the Adder Circuit...

Addition

Adding decimal numbers

 Concept of the carry digit
 15

 $\frac{13}{27}$ $\frac{27}{42}$

- Adding binary numbers
 - Concept of sum and carry bits

Addition Concepts

- Two inputs two numbers to add, digit by digit (bit by bit)
 - AND, there is a carry, which we represent as a third input
- Two outputs
 - Sum
 - Carry
- 'Carry' is an output from one step, and an input to the next one

Binary Addition

- Add
 - 0 + 0 =
 - 0 + 1 =
 - 1 + 0 =
 - 1 + 1 =
- Add these numbers
- c:

1000111	1011010	1011010
<u>0100110</u>	<u>1000111</u>	<u>0111001</u>

s:

Binary Addition: Half Adder

- We need a circuit to add two bits - Either bit can be '0' or '1'
- The function in the truth table is
 - Sum = A'B + AB'
 - Carry = AB

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Binary Addition: Half Adder

• A circuit with two inputs and two outputs

Binary Addition: Half Adder

The Half-Adder and Exclusive OR Gate

- A'B + AB' = Exclusive OR – Typically abbreviated to XOR
 - Simulator uses EOR

Binary Addition: Full Adder

- A full adder is a circuit with *three* inputs (including a 'carry-in') and two outputs (the sum and carry-out)
 - What is the third input?
 - Exercise: Add 111+101

	(carry)
111	('A')
<u>101</u>	('B')
	(sum)

• For adding two numbers, we need three inputs

Binary Addition: Full Adder

• Cascade two half-adders to get a full adder

Summary

- Digital logic circuits
 - Transistors/Switches
 - Binary numbers
 - Boolean algebra
 - Propositional logic
- Primary logic functions
 - AND, OR, NOT
- Binary addition
 - Half adder circuit

Administration

- Class slides will be posted
- Quiz 1 posted, and is due at midnight Sunday.
- Office hours and TA